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Abstract
Quasiclassical boundary conditions for electrochemical potentials at the
interface between diffusive ferromagnetic and non-magnetic metals are derived
for the first time. An expression for the boundary resistance accurately accounts
for the law of conservation of momentum as well as essential gradients of the
chemical potentials. Conditions are established at which spin asymmetry of the
boundary resistance has a positive or negative sign. Dependence of the spin
asymmetry and the absolute value of the boundary resistance on the exchange
splitting of the conduction band opens up new possibilities for estimating spin
polarization of the conduction band of ferromagnetic metals. Consistency of the
theory is checked on existing experimental data.

1. Introduction

The discovery of giant magnetoresistance (MR) in magnetic multilayers [1, 2], which consist
of alternating layers of ferromagnetic metal (F) and normal metal (N), has stimulated intensive
studies of spin-polarized transport through layered magnetic structures [3–5]. Valet and Fert [6]
developed the semiclassical theory of MR in magnetic multilayers for a geometry in which
the electric current is perpendicular to the layers (CPP geometry). It has been shown that
when thickness of the metals in a stack is small compared with the spin diffusion length,
the magnetoresistance of multilayers can be calculated within the two-current series-resistor
model [7–9]. In this case MR is expressed via the resistance of the F/N interface (boundary
resistance), r↑(↓) = 2[1 ∓ γF/N]R∗

F/N, and the bulk specific resistance of the ferromagnetic
layer, ρ↑(↓) = 2[1 ∓ βF]ρ∗

F [6]. In these expressions γF/N and βF are parameters of spin
asymmetry of the boundary and bulk scattering resistances. It follows from [6, 10] that their
linear combination, βF1ρ

∗
F1tF1 + γ1 R∗

F/N, determines sign of MR in layered [F1/N/F2/N] × n
structures (tF is the thickness of the ferromagnetic layers). In [11, 12] positive (inverse) MR
due to negative value of γF/N in (F1/Cr/F2/Cr) multilayers was observed for the first time.
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Theoretical calculations of the boundary resistance [13–15] established the strong
influence of the spin-dependent band structure of ferromagnetic metals on magnetoresistance.
Using the approach of [13] and transmission probabilities through the F/N interface, calculated
earlier from first principles [16], Stiles and Penn [14] obtained from numerical calculations a
negative value of γF/N for the Fe/Cr interface and a positive γF/N for iron-group ferromagnet–
noble metal interfaces. However, conditions on the parameters of contacting materials resulting
in negative or positive values of spin asymmetry of the boundary resistance were not discussed
in the above papers.

In this paper we derive for the first time quasiclassical boundary conditions for
electrochemical potentials of diffusive ferromagnetic and normal metals, which can be used for
solution of a wide class of problems in spintronics. Our expression for the boundary resistance
accurately accounts for the law of conservation of momentum as well as essential gradients
of the chemical potentials. We establish conditions on parameters of the contacting metals, at
which spin asymmetry of the boundary resistance has a positive or negative sign. Dependence
of the spin asymmetry and the boundary resistance on the exchange splitting of the conduction
band offers one more way to estimate spin polarization of conduction band of ferromagnetic
metals. We give an example of such an estimation.

2. Boundary conditions for electrochemical potentials

We derive boundary conditions for electrochemical potentials of diffusive metals using the
quasiclassical Green functions technique. A ‘diffusive ferromagnetic metal’ is a metal in which
spin splitting of the conduction band is small compared with the momentum relaxation rate for
conduction electrons. Let us consider that axis x is perpendicular to the F/N boundary, and
neglect reversal of the electron spin upon transmission through the interface. Then, for each of
the metals, equations for the Green functions gα(n, x, ρ, t) read [17]:

vx,α

∂ga,α

∂x
+ v‖

∂gs,α

∂ρ
+ 1

τα

(
gs,α − gs,α

) = 0, (1)

vx,α
∂gs,α

∂x
+ v‖

∂ga,α

∂ρ
+ ga,α

τα

= 0. (2)

Here n = px,α/|pα|; gs(a),α = (1/2)[gα(nx , x, ρ, t) ± gα(−nx , x, ρ, t)] is the single-particle
quasiclassical Green function symmetric (antisymmetric) with respect to a projection of the
Fermi momentum px,α on the axis x , vx is a projection of the Fermi velocity on the axis x ,
α = (↑,↓) is a spin index and ρ = (y, z) is a coordinate in a plane of the contact. The bar
above gs,α means integration over the solid angle: gs,α = ∮

d�/2πgs,α.
The boundary conditions to equations (1) and (2) are as follows [17]:

gF
a,α(0) = gN

a,α(0) =
{

ga,α(0), p‖ < pF
α, pN

0, min(pF
α, pN) < p‖,

(3)

2Rαga,α(0) = Dα

(
gF

s,α(0) − gN
s,α(0)

)
. (4)

In equations (3) and (4) pF
α and pN are the Fermi momenta in ferromagnetic and normal

metals, respectively, p‖ is a projection of a momentum on the plane of the contact, Dα

and Rα = 1 − Dα are the spin-dependent, quantum-mechanical transmission and reflection
coefficients. Boundary conditions (3) and (4) obey the specular reflection law:

p‖ = pF↓ sin θ↓ = pF↑ sin θ↑ = pN sin θN . (5)

The angles θ in (5) are measured from the axis x , a range of variation for the biggest one is
[0, π/2]. The quasiclassical equations (1) and (2), and the boundary conditions (3) and (4) are
formulated for a single electron trajectory determined by the angles ϕ and θ .
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Upon solution of the system of equations (1) and (2) we shall consider that the ferromagnet
is located to the left of the boundary x = 0, and the normal metal to the right (x > 0),
and that the functions gs,α are homogeneous in the plane of the contact. Then, the system of
equations (1) and (2) can be solved in the form of integral equations for the functions ga,α and
gs,α in the energy representation, gs,α(ε) = 2 tanh(ε/2T ) + fs,α(ε):

f N
s,α(x) = gN

a,α(x) + 1

lx,α

∫ ∞

x
dξ e

x−ξ
lx,α f

N
s,α(ξ), (6)

f F
s,α(x) = −gF

a,α(x) + 1

lx,α

∫ x

−∞
dξ e

ξ−x
lx,α f

F
s,α(ξ). (7)

In a dirty metal the solid-angle averaged function f s,α(ξ) obeys the diffusion equation with a

decay length which is much longer than the mean free path lα . Then, we expand f
F(N)

s,α (ξ) in
the right-hand side of equations (6) and (7) near point x and take out from the integrals terms
independent of ξ . Substituting the resulting expansions into the boundary condition (4) we
find:

2ga,α(0) = Dα

[(
1 − lF

x,α

d

dx

)
f

F
s,α(x) −

(
1 + lN

x,α

d

dx

)
f

N
s,α(x)

]

x=0
. (8)

To formulate boundary conditions for the functions f
F(N)

s,α (which are, in fact, chemical
potentials; see below) we use a matching procedure proposed in [18]. From equation (1) it
follows that for distances of the order of lx,α from the interface

lx,α
dga,α

dx
= 0. (9)

Hence

lx,αga,α = C = constant (10)

in each of the metals. Now we calculate, for example, CF using the expression (8) for
ga,α(x = 0). Then we calculate CF far from the interface using an approximate expression
for gF

a,α(x),

gF
a,α(x) = −lF

x,α

d f
F
s,α(x)

dx
, (11)

which follows from equation (2) after expansion of gF
a,α on Legendre polynomials. Equating

values of the constant CF calculated in the two ways, and applying the relationship between the
averaged Green function and the electrochemical potential, f s,α = (2/π)µα, we receive the
boundary condition for the electrochemical potentials at the interface x = 0:

lF
α

dµF
α(0)

dx
= δα

(
µN

α (0) − µF
α(0)

)
, (12)

where

δα = δ1,α

1 − δ2,α

, δ1,α = 3

2

∫
d�F,α

2π
cos(θF,α)Dα,

δ2,α = 3

2

∫
d�F,α

2π

[

x +
(

pF
α

pN

)2

cos(θN )

]

x Dα,

x = cos(θF,α), d�F,α = sin(θF,α) dθF,α dϕ.

(13)
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The limits of angular integration must satisfy specular reflection conditions at the interface,
equation (5). When deriving equation (12) we have used conservation of the current density at
the interface, which follows from equation (3),

jF
α (0) = σ F

α

e

dµF
α(0)

dx
= σN

α

e

dµN
α (0)

dx
= jN

α (0), (14)

where σ F
α and σN

α are the bulk, spin-channel conductivities of the metals:

σ F(N)
α = e2(pF(N)

α )2lF(N)
α

6π2
. (15)

Equation (14) is actually the second, complementary to equation (12), boundary condition for
the semiclassical description of the spin-polarized transport in magnetic multilayers in terms of
electrochemical potential.

3. Resistance of the interface

The derivative from the electrochemical potential in equation (12) can be expressed in terms of
the current density (14), and we find the spin-dependent resistance of the interface rα :

µN
α (0) − µF

α(0) = erα jα, (16)

rα = 6π2

e2(pF
α)2 A

1 − δ2,α

δ1,α

, (17)

where A is the area of the contact. It follows from equation (17) that, in the
quasiclassical approach at specular reflection from the interface, the boundary resistance
between ferromagnetic and normal metals is determined only by the Fermi momenta of the
contacting metals and the coefficient of transmission through the interface.

Experimental data are given for the spin asymmetry of boundary resistance, γF/N, and for
the renormalized resistance of the interface, AR∗

F/N, determined as follows:

γF/N = r↓ − r↑
r↑ + r↓

, AR∗
F/N = A

4
(r↓ + r↑). (18)

To calculate dependence of γF/N and AR∗
F/N on the Fermi momentum of the non-

magnetic metal for various values of the ferromagnet conduction band polarization we
have used the Fermi-momentum-mismatch model for the transmission coefficient: Dα =
4vN

x,αvF
x,α/[(vN

x,α)2 + (vF
x,α)2]. Results are presented in figures 1 (pF↑ > pF↓ > pN), 2

(pF↑ > pN > pF↓) and 3 (pN > pF↑ > pF↓). From our calculations it follows that for a non-
magnetic metal with a low density of conduction electrons (small value of the Fermi momentum
pN) the spin asymmetry of the boundary resistance γF/N is always negative (figure 1). On
the contrary, for a non-magnetic metal with a high density of conduction electrons the spin
asymmetry of the boundary resistance is always positive (figure 3). In an intermediate situation
γF/N can be negative as well as positive (see figure 2). To attain the maximum amplitude of
negative magnetoresistance in F/N multilayers the spin asymmetry of the boundary resistance
γF/N and the asymmetry of the bulk resistance βF should be both positive and close to unity.
According to our calculations, the Fermi momentum of the non-magnetic metal should be as
close as possible to the Fermi momentum of the majority subband of the ferromagnetic metal
(figure 2, pN/pF↑ → 1.0 and figure 3, pF↑/pN → 1.0). The spin asymmetry of the bulk
resistance can be adjusted by the type and concentration of impurities in the ferromagnetic
metal [19]. Clearly, similar arguments can be applied to the opposite case of negative values
of γF/N and βF, which will result in positive magnetoresistance in multilayers of alternating
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Figure 1. Dependence of the spin asymmetry of boundary resistance γF/N (top field) and the
renormalized resistance of the interface AR∗

F/N (bottom field) on the Fermi momentum of the non-

magnetic metal for the case ( pF↑ > pF↓ > pN).

ferromagnetic and non-magnetic metals. However, a negative asymmetry of the bulk resistance
is met less often [19]. Competition of opposite sign asymmetries of boundary and bulk
resistances can result in negative or positive magnetoresistance depending on the choice of
materials and thickness of the ferromagnetic layers [12].

4. Discussion of experiments

Experiments on CPP transport in multilayers are very complicated because the resistance of
a stack of layers of nanometre thickness is very small (of the order of f� m2). Nevertheless,
available experimental data (see reviews [4, 20] and references in them, and also [12, 21, 22])
allow us to test the internal consistency of the theory. Multilayers of the iron-group
ferromagnetic metals with noble metals most likely belong to case 3 (pN > pF↑ > pF↓),
and the parameter of the spin asymmetry γF/N is positive [4, 12, 20–22]. For example,
γCo/Cu � 0.77 [4]. Then, intersection of the horizontal dashed line γCo/Cu � 0.77 in the
top field of figure 3 with the curve γF/N(pN), corresponding to δ = 0.6, gives pF↑/pN � 0.7.

Accepting pF↑ = 1.0 Å
−1

as a trial value for the Fermi momentum of the majority subband

of cobalt we get pCu � 1.41 Å
−1

, which is a fairly good fit for the free-electron-model value

for copper, pCu
FEM � 1.36 Å

−1
[23]. There are data for silver as the non-magnetic spacer:

γCo/Ag � 0.85 [22]. In a similar way, we obtain from figure 3 pAg � 1.22 Å
−1

, which fits well

the free-electron-model value pAg
FEM � 1.20 Å

−1
[23].

Let us look now at consistency of the theory with boundary resistance data. For the
combination Co/Cu, AR∗

Co/Cu(exp) � 0.51 f� m2 [4]. Continuing the vertical dashed line
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Figure 2. The same as in figure 1, but for the case (pF↑ > pN > pF↓).

for copper in figure 3 into the bottom field until intersection with the curve AR∗
F/N(pN),

corresponding to δ = 0.6, we obtain AR∗
Co/Cu(theor) � 0.74 f� m2. A similar

procedure for silver gives AR∗
Co/Ag(theor) � 0.69 f� m2 (compare with AR∗

Co/Ag(exp) �
0.56 f� m2 [12, 22]). It worth noting that the theory reproduces fairly well the closeness of the
boundary resistances of the Co/Cu and Co/Ag interfaces.

For Co/Cr multilayers the asymmetry of the boundary resistance is negative, γCo/Cr �
−0.24 [12]. This value is admissible for cases 1 (figure 1, top field) and 2 (figure 2, top
field). Without details, we conclude that the first case does not match the expected value
of the conduction band polarization parameter for Co δ ∼ 0.6 ± 0.1 as well as results for
boundary resistances about two orders of magnitude higher. The second case (see dashed lines
in figure 2) results in a Fermi momentum pCr ∼ 0.68 Å

−1
, and in a boundary resistance

AR∗
Co/Cr(theor) � 0.61 f� m2. The Fermi momentum is satisfactory in the frame of the

free electron model [23]. The boundary resistance is close enough to the experimental value
AR∗

Co/Cr(exp) � 0.48 f� m2 [12]. We expect that better matching of the band structures
of cobalt and chromium, both belonging to the iron-group metals, would result in a weaker
influence of the real band structure on the boundary resistance.

A discrepancy with experiment in an absolute value of boundary resistance of about
20–45% does not seem catastrophic for the following reasons. First, the trial choice of

pF↑ = 1.0 Å
−1

was not optimized. Second, we used the free s-electron model as a background
for the theory. One might expect that for an interface between a metal with predominantly d-
electron conduction band (iron group) and an s-electron metal (Cu, Ag), reduced overlapping
and symmetry mismatch may noticeably increase the boundary resistance. Third, Garcı́a and
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Figure 3. The same as in figure 1, but for the case (pN > pF↑ > pF↓).

Stoll [24] have shown (figure 2 of [24]) that the interface roughness also increases boundary
resistance. This increase is estimated to be below 20–60% for different models and magnitudes
of the interface roughness and reasonable differences in the Fermi momenta of contacting
metals. The interface roughness is much less important for the case of CPP transport,
considered in this paper, than for current-in-plane (CIP) transport [25]. Finally, spin reversal
at the interface opposes both the previously considered processes, decreasing the boundary
resistance. The reversal of the electron spin by the spin–orbit interaction is always expected
upon refraction of the electron wave or scattering on roughness at the interface between two
metals. Quantitative analysis of the competition between the above minor mechanisms of
boundary resistance is beyond the scope of this paper. However, it is our expectation that
the key quantity, spin asymmetry of the boundary resistance γF/N, is only weakly dependent
on band structure matching, interface roughness, spin reversal, etc, because of considerable
cancellations in the dimensionless ratio (equation (18)).

Our trial evaluations show that the experimental data for the spin asymmetry of boundary
resistance and the absolute value of boundary resistance in Co/Cu, Co/Ag and Co/Cr
multilayers can be consistently described with the use of the spin polarization parameter for
the conduction band of cobalt δ � 0.6. At the level of the experimental accuracy and
completeness of the theory the estimated value of δ is identical to δ � 0.57, which we
have estimated [26] from experiments of Garcı́a et al [27] on magnetoresistance of cobalt
nanocontacts. Experiments on Andreev spectroscopy cite similar values of δ for cobalt [28].
Thus, the spin asymmetry of the boundary resistance in combination with the absolute value of
the boundary resistance can be used for estimations of the spin-polarization parameter δ of the
conduction band of ferromagnetic metals.
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